General Chemistry II Chapter-by-Chapter detailed learning objectives

Thermodynamics

- 1. Define the system, surroundings and the universe designations and their interactions work and energy interactions.
- 2. Apply the second law of thermodynamics to physical and chemical processes to find their spontaneity.
- 3. Define the definition of the Third law of thermodynamics.
- 4. Relate to the Boltzman equation and calculation of entropy based on microstates.
- 5. Relate to entropy based on enthalpy change of a system and its temperature (at constant pressure)
- 6. Connect the Second law to the Free energy determination for the system.
- 7. Predict entropy changes for chemical equations and physical processes.
- 8. Combine reactions and find the Free energy, entropy and enthalpy changes for the overall reaction in a manner similar to Hess's law.
- 9. Apply the summation (products reactants) equation to find the standard state Free energy, entropy and enthalpy change for a reaction.
- 10. Apply the non-standard state free energy equation to chemical equations at any state of concentration, pressure and temperature.
- 11. Analyze (graphically) the non-standard state free energy during the course of a reaction and define the spontaneous, non-spontaneous and equilibrium points on the graph. Relate the ideas to the non-standard state Free energy equation.
- 12. Analyze the effect of the magnitude of K_{eq} on the standard state Free energy change and its conceptual significance.
- 13. Analyze the impact if temperature on K_{eq} .
- 14. Calculate Gibbs Free energy (Free energy) for aqueous equilibria problems (ex. Solubility, acid-base, complex ion)
- 15. Relate the meaning of free energy and its relationship to the maximum work involved in a physical or chemical process.
- 16. Distinguish between the reversible and irreversible work.